Servo Drives

Servo Drives and servo amplifiers transform a low power command signal from a motion controller into high power current/voltage applied to the servo motor windings to produce torque. A servo motor drive utilizes internal feedback loops for precise control of motor current and may also control velocity. The terms servo drive and servo amplifier are interchangeable. Digital drives contain some form of processing capability, typically a Digital Signal Processor (DSP).

Analog amplifiers or drives have little to no processing capability and perform all the drive functionality strictly in the analog domain. Due to the additional intelligence available on digital drives, they have more functionality, diagnosis capabilities, and easier configuration compared to analog drives.

Intelligent Drives/Smart Drives are drives that combine a portion, or all, of the motion controller functionality with the high power electronics of a motor drive. Smart drives vary with the amount of control functionality and type of communication interface. There are generally two types: fieldbus based and deterministic bus based. 

Fieldbus based intelligent drives contain all the components of a motion controller and are communicated to via a serial port or a fieldbus network. They are typically used for non-coordinated motion control applications.  Electromate® offers a variety of network options for connecting servo drives in a multi-axis configuration. Choosing the right network depends on a variety of factors such as required bandwidth, update rate, performance, and cost. Currently supported network options are:  CANopen, EtherCAT®, RS232, RS485, DeviceNet, Profibus, Ethernet/IP, PROFINET, Modbus TCP/IP and SynqNet.

Deterministic bus based intelligent drives typically incorporate the interpolation and control loop into the drive but rely on a motion controller to perform the trajectory generation. The benefits of either intelligent drive topology include all digital communication, detailed diagnostics, reduced cabling, high axes count and short wiring distance between the drive and motor.

Servo drives are used in applications such as robotics, CNC machinery or automated manufacturing.

Analog Servo Drives View More

Our analog drive family contains drives that can power Single Phase (Brushed) and Three Phase (Brushless) motors. Analog drives are powered off either a single DC or AC (1Ø or 3Ø) power supply, and provide a variety of control and feedback options. The drives accept either a ±10V analog signal, a PWM and Direction signal, or two sinusoidal command signals as input. The signal can represent either a motor torque or velocity command. A digital controller can be used to command and interact with analog servo drives, and a number of input/output pins are available for parameter observation and drive configuration. Analog servo drives are used extensively in motion control systems where precise control of position and/or velocity is required. The analog drive converts the low-energy reference signals from the controller into high-energy signals (motor voltage and current).

Sinusoidal vs. Trapezoidal Servo Drives View More

DC brushless amplifiers (a.k.a. trapezoidal, 6-step or 12-step) use Hall Effect sensor signals for commutation feedback. The Hall Effect sensors (typically three) are built into the motor to detect the position of the rotor magnetic field. These sensors are mounted such that they each generate a square wave with 120-degree phase difference, over one electrical cycle of the motor. The amplifier drives two of the three motor phases with DC current during each specific Hall sensor state. This commutation technique results in a very cost-effective amplifier although the torque ripple with trapezoidal drives is very high, measuring about 13.4% when used with motors with sinusoidal back-EMF.

AC brushless amplifiers (a.k.a. sinusoidal, sine wave) use encoder or resolver signals for commutation feedback. The amplifier drives the motor with sinusoidal currents, resulting in smooth motion (no torque ripple). This amplifier is more complex since it needs to accept high-resolution position feedback. Such amplifiers use a micro-controller implementation for the sinusoidal commutation. When encoder feedback information is used for commutation, Hall Effect sensors are still needed for startup since the encoder provides only incremental position information. Resolvers provide absolute position information and therefore no additional sensors are required. 

Digital Servo DrivesView More

Electromate®’s digital drives deliver peak power output from 1.5 to 27.4kW, and support an array of feedback options. Driving single phase, three phase, and closed loop vector motors with the ability to interface with both digital network commands and traditional ±10V analog commands, our digital drives offer a versatile blend of cutting edge technology and proven results.

Digital servo drives feature:

  • Universal servo motor capability by means of automatic commutation adjustment
  • Variety of feedback options – Absolute Encoder (Heidenhain EnDat® or Stegmann Hiperface®), Sin/Cos Encoder, Incremental Encoder, Hall Sensors, Resolver, Tachometer, Potentiometer
  • Full tuning control of Position, Velocity, and Torque Loops
  • Real-time oscilloscope for high performance tuning
  • Status panel for drive and system diagnostics
  • I/O configuration for over 60 events and signals
  • Dual loop feedback and control - increases stability and accuracy
  • Stand-alone or network configuration

Single Phase (Brushed) Servo Drives View More

Brushed type servo drives are designed for use with permanent magnet brushed DC motors (PMDC motors). PMDC motors have a single winding (armature) on the rotor, and permanent magnets on the stator (no field winding). Brushes and commutators maintain the optimum torque angle. The torque generated by a PMDC motor is proportional to the current, giving it excellent dynamic control capabilities in motion control systems. Brushed drives can also be used to control current in other inductive loads such as voice coil actuators, magnetic bearings, etc.

Three Phase (Brushless) Servo Drives View More

Three Phase (brushless) servo drives are used with brushless servo motors. These motors typically have a three-phase winding on the stator and permanent magnets on the rotor. Brushless motors require commutation feedback for proper operation (the commutators and brushes perform this function on brush type motors). This feedback consists of rotor magnetic field orientation information, supplied either by magnetic field sensors (Hall Effect sensors) or position sensors (encoder or resolver). Brushless motors have better power density ratings than brushed motors because heat is generated in the stator, resulting in a shorter thermal path to the outside environment.

Electric Vehicle Motor Controllers View More

Electromate®’s electric vehicle motor controllers are fully functional, four-quadrant servo drives purpose designed and built to operate today's modern mobile electric vehicular platforms. Available in both analog and digital versions and packaged in a compact and rugged IP65 case, our motor controllers provide high power from battery supplies for either permanent magnet brushed or brushless motors. Whether for traction / propulsion, steering, lifting, or any other electrically driven actuation, the unmatched power density, high efficiency, low weight, built-in regen, and cool thermal operation of our electric vehicle motor controllers provide optimum performance for mobile electric vehicular applications.

Search our Servo Drive Products by category at the links below: